Making It Happen: How to successfully plan, develop and realize an active learning space in your college

(slides are based on renovations of Dawson physics labs: 2008-2010)

Chris Whittaker Dawson College

1- Background:

- Dawson has about 10,000 students
- Science Program has about 2100 students

Background:

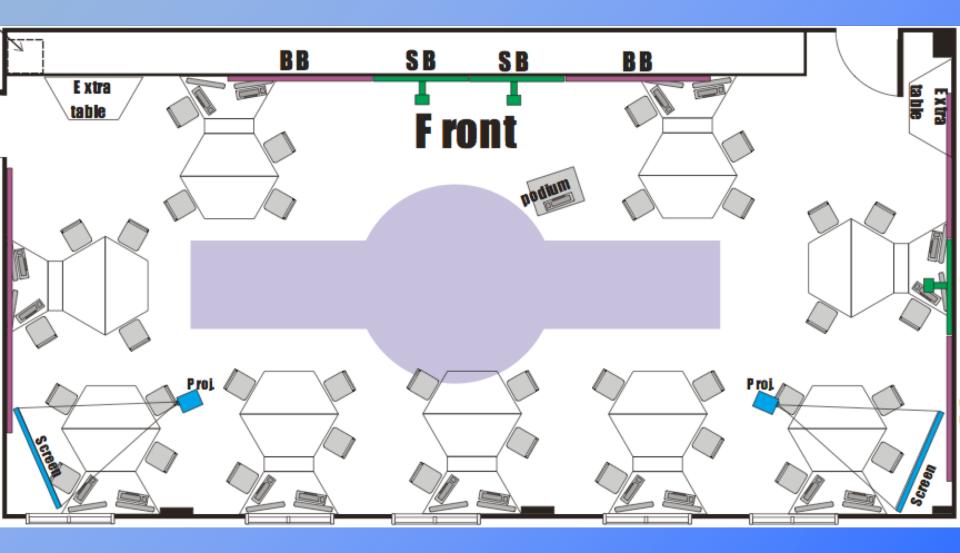
- Dawson has about 10,000 students
- Science Program has about 2100 students
- Physics Dept.
 - has about 15 FTE teaching positions
 - 4 dedicated teaching labs
 - 2 full-time technicians
 - offer daytime, evening and summer classes.

Background:

- In summer 2009 Dawson Physics Dept renovated two of four labs for active teaching.
 - Process started in winter 2008
 - College willing to spend \$\$\$ Jan. 2008
 - Road-trip in June 2008

Background:

- In summer 2009 Dawson Physics Dept renovated two of four labs for active teaching.
 - Process started in winter 2008
 - College willing to spend \$\$\$ Jan. 2008
 - Road-trip in June 2008
- Dawson administration has agreed to renovate a general classroom in January 2012 for active teaching – design & planning in progress.


Background - Labs before renovation:

Background - Labs after renovation:

Background - Labs after renovation:

- 1. Consultation & Expansion
- 2. Refinement & Design Details
- 3. Planning & Supervision of Renovation Work

- 1. Consultation & Expansion
 - Expand people's minds
 - Make theory *real.*

- 1. Consultation & Expansion
 - Expand people's minds
 - Make theory real.

See what others have done:

- 1. Review web & literature
- 2. Road-trip
 - 3 day road-trip to
 - Harvard
 - MIT
 - Dickinson College
 - 3 teachers + 2 technicians

1. Consultation & Expansion

- Expand people's minds
- Make theory *real.*

See what others have done:

- 1. Review web & literature
- 2. Road-trip
 - 3 day road-trip to
 - Harvard
 - MIT
 - Dickinson College
 - 3 teachers + 2 technicians
 - Produced report
 - Make it nice

Physics Lab Roadtrip Report

Sept 12, 2008

<u>Prepared by:</u> Jean-François Brière Claude Jutras Norbert Kristoff Samad Rastikerdar Chris Whittaker

- 1. Consultation & Expansion
- 2. Refinement & Design Details
 O Build list of "wants", then prioritize them

- 1. Consultation & Expansion
- 2. Refinement & Design Details
 - Build list of "wants", then prioritize them

PHYSICS LAB MODERNIZATION WORKING DOCUMENT - (DEC.12, 2008 VERSION)

PRIORITIES

1.	Our labs must continue to allow us to schedule courses as we presently do;	
2.	Our labs must be designed so that their setup is flexible and facilitates an increased variety of pedagogical approaches. While the lab room arrangement should not be changed on a regular basis (certainly not several times per day) the time for changing the basic setup should not exceed 30 minutes;	
3.	Lab setups must include arrangements that facilitate group work as well as hands-on activities and experiments;	
4.	Students must be able to work in small groups, including groups of 2 students that have effective access to a networked computer;	
5.	Equipment storage must be efficient, effective and allow for easy access to equipment in a way that minimizes class disruptions. Minimal storage of equipment in the classroom was seen as desirable. The addition of a small storage room in-between 7A.7 and 7A.9 was seen as a good option.	
6.	There must be effective space for demonstrations in the labs but this space need not be fixed – it may be in the form of a movable cart or an adaptable desk (like at Dickinson College).	

- 1. Consultation & Expansion
- 2. Refinement & Design Details
 - Build list of "wants", then prioritize them
 - Build design around your priorities
 - Build a mock-up.

- 1. Consultation & Expansion
- 2. Refinement & Design Details
- 3. Planning & Supervision of Renovation Work
 - Plan around your realities (summer classes etc.)
 - Build good relationships eng., supv., workers
 - Be on site when work happens.

- 1. Small Working Group doers
- 2. Department or Program deciders
- 3. Large working group everyone
- 4. Administration purse-holders
- 5. Plant & Facilities renovators
- 6. Specialists consultants

- 1. Small Working Group doers
 - Core group of 4-6 people
 - Do most of the development work based on the decisions made by the larger group(s)
 - Including technicians here was very important
 - Most of Working Group went on *road-trip*.

- 1. Small Working Group doers
- 2. Department or Program deciders
 - It is important to make it clear where the decision making is made - for us that was the Physics Dept.
 - Dept. set priorities and approved design.

- 1. Small Working Group doers
- 2. Department or Program deciders
- 3. Large working group everyone
 - It is important that everyone hears directly from all involved in the process
 - Bring together different ideas and positions

- 1. Small Working Group doers
- 2. Department or Program deciders
- 3. Large working group everyone
- 4. Administration purse-holders
 - Need to work with admin. behind the scenes to make sure that you know what is possible and when it has to be done.
 - Need to have admin participate in larger process to understand and engage in it.

- 1. Small Working Group doers
- 2. Department or Program deciders
- 3. Large working group everyone
- 4. Administration purse-holders
- 5. Plant & Facilities renovators
 - They need to understand WHY things are being designed the way they are
 - Collaboration is VERY important

- 1. Small Working Group doers
- 2. Department or Program deciders
- 3. Large working group everyone
- 4. Administration purse-holders
- 5. Plant & Facilities renovators
- 6. Specialists consultants
 - Some groups have a valuable perspective to contribute - ex. flexible design

- Planned change in <u>GRADUAL STEPS</u> less threatening
- Set <u>DESIGN LIMITS</u> early
- FLEXIBILITY THE ace up our sleeve

- Planned change in <u>GRADUAL STEPS</u> less threatening
 - Initially, I wanted to change all labs (= mistake)
 - Not everyone wants an active learning space
 - Some people aren't sure what they want
 - Some aspects of design may *evolve*.

- Planned change in <u>GRADUAL STEPS</u> less threatening
- Set <u>DESIGN LIMITS</u> early
 - Need to be aware of different agendas
 - Don't let everyone decide everything need to carefully control decision making.
 - Don't ask for something you don't want!
 - Example: *class size*

- Planned change in <u>GRADUAL STEPS</u> less threatening
- Set <u>DESIGN LIMITS</u> early
- FLEXIBILITY THE ace up our sleeve
 - Flexibility in design: accommodate everyone
 - Flexibility in process: know when to change

